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CHAPTER 1

Infinite Series, Power Series

1. THE GEOMETRIC SERIES

As a simple example of many of the ideas involved in series, we are going to consider
the geometric series. You may recall that in a geometric progression we multiply
each term by some fixed number to get the next term. For example, the sequences

(1.1a) 2; 4,78, 16; 32504,
2 4 8 16
(1.1b) L5 &5 g3 ors R
1.1c a, ar, ar®, ar®,...
(1.1c) g GFy G0y G505

are geometric progressions. It is easy to think of examples of such progressions.
Suppose the number of bacteria in a culture doubles every hour. Then the terms of
(1.1a) represent the number by which the bacteria population has been multiplied
after 1 hr, 2 hr, and so on. Or suppose a bouncing ball rises each time to % of
the height of the previous bounce. Then (1.1b) would represent the heights of the
successive bounces in yards if the ball is originally dropped from a height of 1 yd.

In our first example it is clear that the bacteria population would increase with-
out limit as time went on (mathematically, anyway; that is, assuming that nothing
like lack of food prevented the assumed doubling each hour). In the second example,
however, the height of bounce of the ball decreases with successive bounces, and we
might ask for the total distance the ball goes. The ball falls a distance 1 yd, rises
a distance 2 yd and falls a distance 2 yd, rises a distance 4 yd and falls a distance
% vd, and so on. Thus it seems reasonable to write the following expression for the
total distance the ball goes:

(1.2) 1+2-242-442- 2+ =14+2(¢+4+£+-),

where the three dots mean that the terms continue as they have started (each one
being % the preceding one), and there is never a last term. Let us consider the
expression in parentheses in (1.2), namely

2 4 8
g e D L T
) stogtar™
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This expression is an example of an infinite series, and we are asked to find its sum.
Not all infinite series have sums; you can see that the series formed by adding the
terms in (1.1a) does not have a finite sum. However, even when an infinite series
does have a finite sum, we cannot find it by adding the terms because no matter
how many we add there are always more. Thus we must find another method. (It
is actually deeper than this; what we really have to do is to define what we mean
by the sum of the series.)

Let us first find the sum of n terms in (1.3). The formula (Problem 2) for the
sum of n terms of the geometric progression (1.1c) is

(1.4) snzﬁ(i_:_:"_),
Using (1.4) in (1.3), we find
2 4 2\" _ 21-(3)" _ 2N

As n increases, (%)” decreases and approaches zero. Then the sum of n terms
approaches 2 as n increases, and we say that the sum of the series is 2. (This is
really a definition: The sum of an infinite series is the limit of the sum of n terms
asn — 00.) Then from (1.2), the total distance traveled by the ballis 1 +2-2 = 5.
This is an answer to a mathematical problem. A physicist might well object that
a bounce the size of an atom is nonsense! However, after a number of bounces, the
remaining infinite number of small terms contribute very little to the final answer
(see Problem 1). Thus it makes little difference (in our answer for the total distance)
whether we insist that the ball rolls after a certain number of bounces or whether
we include the entire series, and it is easier to find the sum of the series than to find
the sum of, say, twenty terms.

Series such as (1.3) whose terms form a geometric progression are called geo-
melric series. We can write a geometric series in the form

(1.6) at+ar+ar’+-+ar™ ...,

The sum of the geometric series (if it has one) is by definition

(17) 5= lim Sn,

where S, is the sum of n terms of the series. By following the method of the exam-
ple above, you can show (Problem 2) that a geometric series has a sum if and only
if || <1, and in this case the sum is

(1.8) S=
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The series is then called convergent.

Here is an interesting use of (1.8). We can write 0.3333--- = 1—% + 1—80 +

1—0305 o wni= 1—3% = —15 by (1.8). Now of course you knew that, but how about

0.785714285714 - - ? We can write this as 0.5-+0.285714285714 - - - = § 4 §-2857L% —

% + ggggég = % + % = %. (Note that any repeating decimal is equivalent to a frac-
tion which can be found by this method.) If you want to use a computer to do the
arithmetic, be sure to tell it to give you an exact answer or it may hand you back
the decimal you started with! You can also use a computer to sum the series, but

using (1.8) may be simpler. (Also see Problem 14.)

PROBLEMS, SECTION 1

1. In the bouncing ball example above, find the height of the tenth rebound, and the
distance traveled by the ball after it touches the ground the tenth time. Compare
this distance with the total distance traveled.

2. Derive the formula (1.4) for the sum S» of the geometric progression S» = a+ ar+
ar® + -+ + ar™ 1. Hint: Multiply S, by r and subtract the result from Sn; then
solve for Sn. Show that the geometric series (1.6) converges if and only if |r| < 1;
also show that if |r| < 1, the sum is given by equation (1.8).

Use equation (1.8) to find the fractions that are equivalent to the following repeating

decimals:
3. 0.55555--- 4. 0.818181:-- 5. 0.583333---
6. 0.61111--- 7. 0.185185--- 8. 0.694444---
9. 0.857142857142 - - - 10. 0.576923076923076923 - - -

11. 0.678571428571428571 - - -

12. In a water purification process, one-nth of the impurity is removed in the first stage.
In each succeeding stage, the amount of impurity removed is one-nth of that removed
in the preceding stage. Show that if n = 2, the water can be made as pure as you
like, but that if n = 3, at least one-half of the impurity will remain no matter how
many stages are used.

13. If you invest a dollar at “6% interest compounded monthly,” it amounts to (1.005)™
dollars after n months. If you invest $10 at the beginning of each month for 10 years
(120 months), how much will you have at the end of the 10 years?

14. A computer program gives the result 1/6 for the sum of the series 3> (—=5)". Show
that this series is divergent. Do you see what happened? Warning hint: Always
consider whether an answer is reasonable, whether it’s a computer answer or your
work by hand.

15. Connect the midpoints of the sides of an equilateral triangle to form 4 smaller
equilateral triangles. Leave the middle small triangle blank, but for each of the
other 3 small triangles, draw lines connecting the midpoints of the sides to create
4 tiny triangles. Again leave each middle tiny triangle blank and draw the lines to
divide the others into 4 parts. Find the infinite series for the total area left blank
if this process is continued indefinitely. (Suggestion: Let the area of the original
triangle be 1; then the area of the first blank triangle is 1/4.) Sum the series to find
the total area left blank. Is the answer what you expect? Hint: What is the “area”
of a straight line? (Comment: You have constructed a fractal called the Sierpiriski
gasket. A fractal has the property that a magnified view of a small part of it looks
very much like the original.)
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16. Suppose a large number of particles are bouncing back and forth between z = 0 and
z = 1, except that at each endpoint some escape. Let r be the fraction reflected
each time; then (1 —r) is the fraction escaping. Suppose the particles start at z = 0
heading toward z = 1; eventually all particles will escape. Write an infinite series
for the fraction which escape at = = 1 and similarly for the fraction which escape at
x = 0. Sum both the series. What is the largest fraction of the particles which can
escape at © = 0? (Remember that 7 must be between 0 and 1.)

2. DEFINITIONS AND NOTATION

There are many other infinite series besides geometric series. Here are some exam-

ples:

(2.1a) 12+92+32+42
2 3 4

(2.1b) 2+—+§+—+
.7,‘2 £L‘3 CI,‘4

2.1 s Lo T s

(2.1c) T 2+3 4+

In general, an infinite series means an expression of the form
(2.2) a+axt+az+--+ap -+,

where the a,’s (one for each positive integer n) are numbers or functions given by
some formula or rule. The three dots in each case mean that the series never ends.
The terms continue according to the law of formation, which is supposed to be
evident to you by the time you reach the three dots. If there is apt to be doubt
about how the terms are formed, a general or nth term is written like this:

(2.3a) 12422432+ ..,

3 (_1)n—1xn
2 T P TR e TR
(2.3b) N R I %

(The quantity n!, read n factorial, means, for integral n, the product of all integers
from 1 to n; for example, 5! =5-4-3-2-1 = 120. The quantity 0! is defined to be
1.) In (2.3a), it is easy to see without the general term that each term is just the
square of the number of the term, that is, n?. However, in (2.3b), if the formula for
the general term were missing, you could probably make several reasonable guesses
for the next term. To be sure of the law of formation, we must either know a good
many more terms or have the formula for the general term. You should verify that
the fourth term in (2.3b) is —z%/6.

We can also write series in a shorter abbreviated form using a summation sign
> followed by the formula for the nth term. For example, (2.3a) would be written

o0
(2.4) 12422432+ 42 4. =) " n?

(read “the sum of n? from n =1 to o0”). The series (2.3b) would be written
3 o0 'n.——l "

= 2 w__f_
TS T Zn—l

n=1
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For printing convenience, sums like (2.4) are often written Y > n?.

In Section 1, we have mentioned both sequences and series. The lists in (1.1)
are sequences; a sequence is simply a set of quantities, one for each n. A series is
an indicated sum of such quantities, as in (1.3) or (1.6). We will be interested in
various sequences related to a series: for example, the sequence a, of terms of the
series, the sequence S, of partial sums [see (1.5) and (4.5)], the sequence R, [see
(4.7)], and the sequence p, [see (6.2)]. In all these examples, we want to find the
limit of a sequence as n — oo (if the sequence has a limit). Although limits can be
found by computer, many simple limits can be done faster by hand.

Example1. Find the limit as n — oo of the sequence

(2n—1)* + V14 9n8

1 —n3—"Tnt

We divide numerator and denominator by n? and take the limit as n — oo. Then
all terms go to zero except
2940 19

=7 7

Example 2. Find lim,_ .o, 2. By L’Hépital’s rule (see Section 15)

n

1 1
lim — = lim Un =
n—oo N n—oo

0.

Comment: Strictly speaking, we can’t differentiate a function of n if n is an integer,
but we can consider f(z) = (In z)/z, and the limit of the sequence is the same as
the limit of f(z).

Example 3. Find lim,,_ (%)l/n. We first find

1/n
In (l> = —llnn.
n n

Then by Example 2, the limit of (Inn)/n is 0, so the original limit is e® = 1.

PROBLEMS, SECTION 2

In the following problems, find the limit of the given sequence as n — oco.

) n® +5n° o 2 (n+ 1) LR (-)™n+1 @O
2n3 + 3v4+nb ] VBFmm2+dnt 2 ) n
Vil 10" n" W G
Z ) j — 9 - L. N &
4 = P 5. — ) b, 6. v 2 B Qw
)2
e (1 +p?)Y/ Q'Z . 8. (n!) O - 9. nsin(1l/n) 4 Y

) (2n)! .
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3. APPLICATIONS OF SERIES

In the example of the bouncing ball in Section 1, we saw that it is possible for the
sum of an infinite series to be nearly the same as the sum of a fairly small number of
terms at the beginning of the series (also see Problem 1.1). Many applied problems
cannot be solved exactly, but we may be able to find an answer in terms of an
infinite series, and then use only as many terms as necessary to obtain the needed
accuracy. We shall see many examples of this both in this chapter and in later
chapters. Differential equations (see Chapters 8 and 12) and partial differential
equations (see Chapter 13) are frequently solved by using series. We will learn
how to find series that represent functions; often a complicated function can be
approximated by a few terms of its series (see Section 15).

But there is more to the subject of infinite series than making approximations.
We will see (Chapter 2, Section 8) how we can use power series (that is, series
whose terms are powers of z) to give meaning to functions of complex numbers,
and (Chapter 3, Section 6) how to define a function of a matrix using the power
series of the function. Also power series are just a first example of infinite series. In
Chapter 7 we will learn about Fourier series (whose terms are sines and cosines). In
Chapter 12, we will use power series to solve differential equations, and in Chapters
12 and 13, we will discuss other series such as Legendre and Bessel. Finally, in
Chapter 14, we will discover how a study of power series clarifies our understanding
of the mathematical functions we use in applications.

4. CONVERGENT AND DIVERGENT SERIES

We have been talking about series which have a finite sum. We have also seen that
there are series which do not have finite sums, for example (2.1a). If a series has a
finite sum, it is called convergent. Otherwise it is called divergent. It is important
to know whether a series is convergent or divergent. Some weird things can happen
if you try to apply ordinary algebra to a divergent series. Suppose we try it with
the following series:

(4.1) S=1424+4+8+16+---.
Then,
285=2+4+4+48+16+---=5-1,
S=-1.

This is obvious nonsense, and you may laugh at the idea of trying to operate with
such a violently divergent series as (4.1). But the same sort of thing can happen in
more concealed fashion, and has happened and given wrong answers to people who
were not careful enough about the way they used infinite series. At this point you
probably would not recognize that the series

1 1 1 1
4.2 [ el St B B
(4.2) +2+3+4+5+

is divergent, but it is; and the series

(4.3) =t

N =
W=
Ll
(S
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is convergent as it stands, but can be made to have any sum you like by combining
the terms in a different order! (See Section 8.) You can see from these examples
how essential it is to know whether a series converges, and also to know how to
apply algebra to series correctly. There are even cases in which some divergent
series can be used (see Chapter 11), but in this chapter we shall be concerned with
convergent series.

Before we consider some tests for convergence, let us repeat the definition of
convergence more carefully. Let us call the terms of the series a,, so that the series
is

(4.4) a1 t+ag+azt+ag+---+ap+---.

Remember that the three dots mean that there is never a last term; the series goes
on without end. Now consider the sums S, that we obtain by adding more and
more terms of the series. We define

S1 =a,
Sy = a; + ag,
(4.5) S3=a1 +az + as,

Sn=a1+az+az+- -+ an.

Each S, is called a partial sum; it is the sum of the first n terms of the series. We
had an example of this for a geometric progression in (1.4). The letter n can be
any integer; for each n, S, stops with the nth term. (Since S, is not an infinite
series, there is no question of convergence for it.) As n increases, the partial sums
may increase without any limit as in the series (2.1a). They may oscillate as in the
series 1 =243 —4+45—--- (which has partial sums 1,—1,2,—2,3,---) or they may
have some more complicated behavior. One possibility is that the S,’s may, after
a while, not change very much any more; the a,’s may become very small, and the
Sr’s come closer and closer to some value S. We are particularly interested in this
case in which the S;,’s approach a limiting value, say

(4.6) lim S, = S.

n—oo

(Tt is understood that S is a finite number.) If this happens, we make the following
definitions.

a. If the partial sums S,, of an infinite series tend to a limit .S, the series is called
convergent. Otherwise it is called divergent.

b. The limiting value S is called the sum of the series.
c. The difference R, = S — Sy, is called the remainder (or the remainder after n

terms). From (4.6), we see that

(4.7) lim R, = lim (S—8a)=5-8=0.
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Example1. We have already (Section 1) found S,, and S for a geometric series. From (1.8)

and (1.4), we have for a geometric series, Rn:ff; which — 0 asn — oo if |r| < 1.
Example 2. By partial fractions, we can write ;22_—1 = ﬁ — n;ﬂ Let’s write out a
number of terms of the series
= n2—1 = Xt—=1 m+l E —~\n n+2
—1-z4s-i4i 11 1 1 1 1 1
7 32 43 5 4 65 76 8
PSR T TS TS T T
n—2 n n—-1 n+l n n+2

Note the cancellation of terms; this kind of series is called a telescoping series.

Satisfy yourself that when we have added the nth term (% — n+_2), the only terms

which have not cancelled are 1, %, %, and n_—+12, so we have
3 G 1 3 1 1
= —_-— —_—— —_— = -, R:— 5
Sn 2 n+l n4+2 $=3 A g

Example 3. Another interesting series is

i::m (nL) :i::[lnn—ln(n—l—l)]

=mnl-In24+m2-m3+mIn3—-Ind+---+Inn—In(n+1)---.

Then S, = —In(n + 1) which — —o00 as n — o0, so the series diverges. However,
note that a, = In -nfr—l —1Inl =0 asn — oo, so we see that even if the terms tend
to zero, a series may diverge.

PROBLEMS, SECTION 4

For the following series, write formulas for the sequences an,Sn, and R, and find the
limits of the sequences as n — oo (if the limits exist).

iy 21
1. ZQ_" 3: ;57

Lo
2

2
e

11,1
4 8 16

g nlng Hint: What is e~ ™37

e Hint: ! A
n(n+1) "nn+1l) n n+1’

o0
1
5. > /S Hint: Simplify this.
0
1

B BT
3:4 4.5

—
(V]
(V]
- o
w
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5. TESTING SERIES FOR CONVERGENCE; THE PRELIMINARY TEST

It is not in general possible to write a simple formula for S, and find its limit as
n — oo (as we have done for a few special series), so we need some other way to find
out whether a given series converges. Here we shall consider a few simple tests for
convergence. These tests will illustrate some of the ideas involved in testing series
for convergence and will work for a good many, but not all, cases. There are more
complicated tests which you can find in other books. In some cases it may be quite
a difficult mathematical problem to investigate the convergence of a complicated
series. However, for our purposes the simple tests we give here will be sufficient.

First we discuss a useful preliminary test. In most cases you should apply this
to a series before you use other tests.

Preliminary test. If the terms of an infinite series do not tend to zero (that is,
if lim,,_,o an # 0), the series diverges. If lim,, . a, = 0, we must test further.

This is not a test for convergence; what it does is to weed out some very badly
divergent series which you then do not have to spend time testing by more com-
plicated methods. Note carefully: The preliminary test can never tell you that a
series converges. It does not say that series converge if a,, — 0 and, in fact, often
they do not. A simple example is the harmonic series (4.2); the nth term certainly
tends to zero, but we shall soon show that the series Y -, 1/n is divergent. On
the other hand, in the series

1 2 3 4

2 % 3 C 4 * 5 +
the terms are tending to 1, so by the preliminary test, this series diverges and no
further testing is needed.

PROBLEMS, SECTION 5

Use the preliminary test to decide whether the following series are divergent or require
further testing. Careful: Do not say that a series is convergent; the preliminary test cannot
decide this.

D

1l 249 20 5 =46 0 V3 Vi V5 VB -
¥ st -t 2 \/5+T+?+—4_+_5—+'” TL

— n+3 0 >, (—1)"n?
3. 7;1_—7124-1071 T 4, ;—(n-i-l)? b

n! <l T I &"[ )

. ;n!Jrl b & ;(er)-' - +f L, Yost (;”(\’VW' )

o9 n - o0 ‘ N VA U\,\(“,«\/\—Q
7, ZM \T(— 8 Inn \T\f W s e

n=1 n3+1 J n=1 L

o 3n b oo 1 B
9. ;——2n+3n 10. ;(1_E)

11. Using (4.6), give a proof of the preliminary test. Hint: Sn — Sn—1 = an.
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6. CONVERGENCE TESTS FOR SERIES OF POSITIVE TERMS;
ABSOLUTE CONVERGENCE

We are now going to consider four useful tests for series whose terms are all positive.
If some of the terms of a series are negative, we may still want to consider the related
series which we get by making all the terms positive; that is, we may consider the
series whose terms are the absolute values of the terms of our original series. If
this new series converges, we call the original series absolutely convergent. It can be
proved that if a series converges absolutely, then it converges (Problem 7.9). This
means that if the series of absolute values converges, the series is still convergent
when you put back the original minus signs. (The sum is different, of course.) The
following four tests may be used, then, either for testing series of positive terms, or
for testing any series for absolute convergence.

A. The Comparison Test
This test has two parts, (a) and (b).

(a) Let
my +mo +m3+myg+ -

be a series of positive terms which you know converges. Then the series you are
testing, namely

a; +ag+az3+aqg+ -

is absolutely convergent if |a,| < m, (that is, if the absolute value of each term of
the a series is no larger than the corresponding term of the m series) for all n from
some point on, say after the third term (or the millionth term). See the example
and discussion below.

(b) Let
di+do+d3+dg+ -

be a series of positive terms which you know diverges. Then the series
|la1| + |ao| + |as| + |ag| + - -

diverges if |an| > dy, for all n from some point on.

Warning: Note carefully that neither |a,| > my, nor |a,| < d, tells us anything.
That is, if a series has terms larger than those of a convergent series, it may still
converge or it may diverge—we must test it further. Similarly, if a series has terms
smaller than those of a divergent series, it may still diverge, or it may converge.

o0
1 1.. 1 1

Example. Testg —=14+=-4+=-4+—=—+4---f ;

p 2 = +2+6+24+ or convergence

As a comparison series, we choose the geometric series
L1 L1
—~om 2 4 8 16 ‘

Notice that we do not care about the first few terms (or, in fact, any finite number
of terms) in a series, because they can affect the sum of the series but not whether
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it converges. When we ask whether a series converges or not, we are asking what
happens as we add more and more terms for larger and larger n. Does the sum
increase indefinitely, or does it approach a limit? What the first five or hundred or
million terms are has no effect on whether the sum eventually increases indefinitely
or approaches a limit. Consequently we frequently ignore some of the early terms
in testing series for convergence.

In our example, the terms of Y >, 1/n! are smaller than the corresponding
terms of Y >, 1/2™ for all n > 3 (Problem 1). We know that the geometric series
converges because its ratio is % Therefore 2 | 1/n! converges also.

- A 5o FRVA 402 0L covte,
PROBLEMS, SECTION 6 -
1. Show that n! > 2" for all n > 3. Hint: Write out a few terms; then consider what

you multiply by to go from, say, 5! to 6! and from 2° to 2°.

2. Prove that the harmonic series ), , 1/n is divergent by comparing it with the

series
1 1l A 1 1 1 1 1

1+ = -+ - —+=-+=-+= t h al to — sed gy
+2+(4+4)+(8+8+8+8>+<8 erms each equ 016>+
i 4 & 1.1 1.1

which is 1+§+5+§+§+....

Prove the convergence of > | 1/ n? by grouping terms somewhat as in Problem 2. jvo - elone l

4. Use the comparison test to prove the convergence of the following series:

0 1 | N AN | y . LS
b X AL~
(a>§::1—2n+3n ();"2" w252 s ke g
n n 2 r'/

5. Test the following series for convergence using the comparison test.

(a) Z % Hint: Which is larger, n or v/n ? (b) Z ﬁ
n=1 n=2

6. There are 9 one-digit numbers (1 to 9), 90 two-digit numbers (10 to 99). How many
three-digit, four-digit, etc., numbers are there? The first 9 terms of the harmonic
series 1 + % + % i e % are all greater than %; similarly consider the next 90

terms, and so on. Thus prove the divergence of the harmonic series by comparison

with the series

[Tl5+1l0+---(9 ter;ns e%ghz llo)]-;[QOQterms each = 3%—0-]+'--
=ﬁ+m+“':ﬁ+ﬁ+"'-

The comparison test is really the basic test from which other tests are derived.
It is probably the most useful test of all for the experienced mathematician but it
is often hard to think of a satisfactory m series until you have had a good deal of
experience with series. Consequently, you will probably not use it as often as the
next three tests.

B. The Integral Test

We can use this test when the terms of the series are positive and not increasing,
that is, when an4+1 < ay,. (Again remember that we can ignore any finite number of
terms of the series; thus the test can still be used even if the condition ant1 < an
does not hold for a finite number of terms.) To apply the test we think of a, as a
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function of the variable n, and, forgetting our previous meaning of n, we allow it to
take all values, not just integral ones. The test states that:

If0 < any1 < a, for n > N, then 3°*°a, converges if [* a, dn is finite and
diverges if the integral is infinite. (The integral is to be evaluated only at the
upper limit; no lower limit is needed.)

To understand this test, imagine a graph sketched of a, as a function of n. For
example, in testing the harmonic series > -, 1/n, we consider the graph of the
function y = 1/n (similar to Figures 6.1 and 6.2) letting n have all values, not just
integral ones. Then the values of y on the graph at n = 1,2,3,---, are the terms
of the series. In Figures 6.1 and 6.2, the areas of the rectangles are just the terms
of the series. Notice that in Figure 6.1 the top edge of each rectangle is above
the curve, so that the area of the rectangles is greater than the corresponding area
under the curve. On the other hand, in Figure 6.2 the rectangles lie below the
curve, so their area is less than the corresponding area under the curve. Now the
areas of the rectangles are just the terms of the series, and the area under the curve
is an integral of y dn or a, dn. The upper limit on the integrals is co and the lower
limit could be made to correspond to any term of the series we wanted to start
with. For example (see Figure 6.1), f3°° @y dn is less than the sum of the series from
a3 on, but (see Figure 6.2) greater than the sum of the series from a4 on. If the
integral is finite, then the sum of the series from a4 on is finite, that is, the series
converges. Note again that the terms at the beginning of a series have nothing to
do with convergence. On the other hand, if the integral is infinite, then the sum of
the series from a3 on is infinite and the series diverges. Since the beginning terms
are of no interest, you should simply evaluate [* a, dn. (Also see Problem 16.)

ayf-— a
L) e il a-—
aglz—=ls——= az-——|-—
2 3 4 5 6 R~—> 2 3 4 5 6 n—-
Figure 6.1 Figure 6.2

Example. Test for convergence the harmonic series

(- |
6.1 R e ol O
(6.1) totg gt

Using the integral test, we evaluate
oo 1 .
/ —dn:lnn| = 00:
n

(We use the symbol In to mean a natural logarithm, that is, a logarithm to the base
e.) Since the integral is infinite, the series diverges.
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PROBLEMS, SECTION 6

Use the integral test to find whether the following series converge or diverge. Hint and
warning: Do not use lower limits on your integrals (see Problem 16).

7. nz:; — 8. ; = o 7;3
10 i L 11 i NN 12 i
f —en+9 ) n(1 + Inn)3/2 T A(n? + (n2+1)2

e 2

n (o]
18 ¥ + Y

15. Use the integral test to prove the following so-called p-series test. The series

i 1 s convergent if p > 1,
= n? divergent if p <1.

Caution: Do p =1 separately.

_1lgo —

16. In testing > 1/n? for convergence, a student evaluates Jndn = —n
0+ 0o = oo and concludes (erroneously) that the series diverges. What is wrong?
Hint: Consider the area under the curve in a diagram such as Figure 6.1 or 6.2.
This example shows the danger of using a lower limit in the integral test.

17.  Use the integral test to show that 3 >° e ~ converges. Hint: Although you cannot
evaluate the integral, you can show that it is finite (which is all that is necessary)
by comparing it with [* e~ "dn.

C. The Ratio Test

The integral test depends on your being able to integrate a,dn; this is not always
easy! We consider another test which will handle many cases in which we cannot
evaluate the integral. Recall that in the geometric series each term could be obtained
by multiplying the one before it by the ratio r, that is, ap+1 = ran or ant1/an = 1.
For other series the ratio an41/an is not constant but depends on n; let us call
the absolute value of this ratio p,. Let us also find the limit (if there is one) of
the sequence p, as n — oo and call this limit p. Thus we define p, and p by the

equations
0, Gn+1
T ;]
(6.2) an
p= lim py.

If you recall that a geometric series converges if |r| < 1, it may seem plausible that
a series with p < 1 should converge and this is true. This statement can be proved
(Problem 30) by comparing the series to be tested with a geometric series. Like a ge-
ometric series with |r| > 1, a series with p > 1 also diverges (Problem 30). However,
if p = 1, the ratio test does not tell us anything; some series with p = 1 converge
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and some diverge, so we must find another test (say one of the two preceding tests).
To summarize the ratio test:

p <1, the series converges;
(6.3) If ¢ p=1, use a different test;
p>1, the series diverges.

Example 1. Test for convergence the series

1 1 | 1
+5+§i+“'+m+"'
Using (6.2), we have
Y )
S TP TR
_oomlee nn—1)---3-2-1 |
(n+1)! (m+1@)(n-1)---3-2-1 n+1’
. . 1
p:nler;opn—nlLrgon+1 =0

Since p < 1, the series converges.
Example2. Test for convergence the harmonic series

1 1 1
s o oo = o v

2" 3
We find
1 1 n
p":n+1T;_n+1’
p= lim : = 1.

= lmm 1
n—oon 4 1 n—)oo1—|—;

Here the test tells us nothing and we must use some different test. A word of
warning from this example: Notice that p, = n/(n + 1) is always less than 1. Be
careful not to confuse this ratio with p and conclude incorrectly that this series
converges. (It is actually divergent as we proved by the integral test.) Remember
that p is not the same as the ratio p, = |an41/an|, but is the limit of this ratio as
n — 00.

PROBLEMS, SECTION 6

Use the ratio test to find whether the following series converge or diverge:

2,-2" 3P > nl
18. ;ﬁ 19. Zﬁ 20. Z_:O(Qn)!
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4L~ (2n)! ’ — (n!)? T4~ 100m
n=0 n=1 n=1
00 32n 0 e o (n!)Sean
24. = 25. — 26. —
2o 2 Vi 2
= 100" > n!(2n)! >, /(2n)!
27. X‘B”W 28. ) Gl 20. >
n= n=0 n=0

30. Prove the ratio test. Hint: If |ant1/an] — p < 1, take o so that p < o < 1.
Then |ant1/an| < o if n is large, say n > N. This means that we have |an+1]| <
olan|,|an+2| < glan+1| < o*|an|, and so on. Compare with the geometric series

o0
Za"|aN|.
n=1

Also prove that a series with p > 1 diverges. Hint: Take p > o > 1, and use the
preliminary test.
D. A Special Comparison Test

This test has two parts: (a) a convergence test, and (b) a divergence test. (See
Problem 37.)

(a) If >°0° , by is a convergent series of positive terms and an, > 0 and an /by,
tends to a (finite) limit, then 3> ; an converges.

(b) If 377, dy is a divergent series of positive terms and a, > 0 and an/dn
tends to a limit greater than 0 (or tends to +oo), then Y o | an diverges.

There are really two steps in using either of these tests, namely, to decide on a
comparison series, and then to compute the required limit. The first part is the most
important; given a good comparison series it is a routine process to find the needed
limit. The method of finding the comparison series is best shown by examples.

Example1. Test for convergence

i voni—5n+1
~ 4n3 —Tn2 427
Remember that whether a series converges or diverges depends on what the
terms are as n becomes larger and larger. We are interested in the nth term as
n — oo. Think of n = 10%° or 10'%, say; a little calculation should convince you
that as n increases, 2n? — 5n + 1 is 2n? to quite high accuracy. Similarly, the
denominator in our example is nearly 4n® for large n. By Section 9, fact 1, we see
that the factor v/2/4 in every term does not affect convergence. So we consider as
a comparison series just
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which we recognize (say by integral test) as a convergent series. Hence we use test
(a) to try to show that the given series converges. We have:

im 9 \/2n2—5n+1;i
P n  nooo\ AR —Tn2 12 n?

n2v/2n2 —5n+1

QR S e

Since this is a finite limit, the given series converges. (With practice, you won’t
need to do all this algebra! You should be able to look at the original problem and
see that, for large n, the terms are essentially 1/n?, so the series converges.)

Example2. Test for convergence

i 3n _p3
5_ B2
L o5n
Here we must first decide which is the important term as n — oo; is it 3™ or
n3? We can find out by comparing their logarithms since In N and N increase or
decrease together. We have In3" = nln3, and Inn® = 3lnn. Now Inn is much
smaller than n, so for large n we have nln3 > 3Inn, and 3™ > n3. (You might like
to compute 1003 = 10%, and 31%° > 5 x 10%".) The denominator of the given series
is approximately n°. Thus the comparison series is Yoo, 3™/nP. It is easy to prove
this divergent by the ratio test. Now by test (b)

) 3"—-7’1,3 .371 ) _g_n

which is greater than zero, so the given series diverges.

PROBLEMS, SECTION 6
Use the special comparison test to find whether the following series converge or diverge.
N e
33. i 34, g ﬁ?’_’i;’——n‘l—_s
35. Z i ;’;:i - 36. i v 3151:;3

37. Prove the special comparison test. Hint (part a): If an/bn — L and M > L, then
an < Mbn for large n. Compare .- | an with > 27 Mb,.



Section 7 Alternating Series 17

7. ALTERNATING SERIES

So far we have been talking about series of positive terms (including series of abso-
lute values). Now we want to consider one important case of a series whose terms
have mixed signs. An alternating series is a series whose terms are alternately plus
and minus; for example,
1 R OV | (—1)nt+!

(7:1) 1 5 + 371 + 5 + P +

is an alternating series. We ask two questions about an alternating series. Does it
converge? Does it converge absolutely (that is, when we make all signs positive)?
Let us consider the second question first. In this example the series of absolute

values

2 3 4 n
is the harmonic series (6.1), which diverges. We say that the series (7.1) is not
absolutely convergent. Next we must ask whether (7.1) converges as it stands. If it
had turned out to be absolutely convergent, we would not have to ask this question
since an absolutely convergent series is also convergent (Problem 9). However, a
series which is not absolutely convergent may converge or it may diverge; we must

test it further. For alternating series the test is very simple:

Test for alternating series. An alternating series converges if the absolute
value of the terms decreases steadily to zero, that is, if |ant1| < |an| and
hmy. o a, = 0.

1
& l, and lim — =0, so (7.1) converges.

In our example
4 +1 n n—oon

PROBLEMS, SECTION 7

Test the following series for convergence.

oo _1)n oo _9)n oo _1)n
i z_;(\/ﬁ) 2, Zl(n2) 3 Zl(rﬁ)
= (=3)" &% ()R = (=1)™n
4 5y 5. 3 o3 T
— (=1)"n — (=1)"v10n
i ;1+n2 8 ; n+2

9. Prove that an absolutely convergent series > | an is convergent. Hint: Put b, =
an + |an|. Then the bn are nonnegative; we have |bn| < 2|an| and an = b — |an|.
10. The following alternating series are divergent (but you are not asked to prove this).
Show that an — 0. Why doesn’t the alternating series test prove (incorrectly) that
these series converge?

(a) 2_14_%_1_*_2_14_%_1...
2 3 4 5 6 7 8
TIPS i S SRS LS B
V2 o2 3 3 i 4 5 5
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8. CONDITIONALLY CONVERGENT SERIES

A series like (7.1) which converges, but does not converge absolutely, is called con-
ditionally convergent. You have to use special care in handling conditionally con-
vergent series because the positive terms alone form a divergent series and so do
the negative terms alone. If you rearrange the terms, you will probably change the
sum of the series, and you may even make it diverge! It is possible to rearrange the
terms to make the sum any number you wish. Let us do this with the alternating
harmonic series 1 — % + % o % + ---. Suppose we want to make the sum equal to
1.5. First we take enough positive terms to add to just over 1.5. The first three

positive terms do this:

1 1 8
413515
t3ty =i~

Then we take enough negative terms to bring the partial sum back under 1.5; the
one term —% does this. Again we add positive terms until we have a little more than
1.5, and so on. Since the terms of the series are decreasing in absolute value, we are
able (as we continue this process) to get partial sums just a little more or a little less
than 1.5 but always nearer and nearer to 1.5. But this is what convergence of the
series to the sum 1.5 means: that the partial sums should approach 1.5. You should
see that we could pick in advance any sum that we want, and rearrange the terms
of this series to get it. Thus, we must not rearrange the terms of a conditionally
convergent series since its convergence and its sum depend on the fact that the
terms are added in a particular order.

Here is a physical example of such a series which emphasizes the care needed
in applying mathematical approximations in physical problems. Coulomb’s law
in electricity says that the force between two charges is equal to the product of
the charges divided by the square of the distance between them (in electrostatic
units; to use other units, say SI, we need only multiply by a numerical constant).
Suppose there are unit positive charges at z = 0, v/2, V4, v/6, V8, -+, and unit
negative charges at z = 1, v/3, v/5, V/7, - - - . We want to know the total force acting
on the unit positive charge at z = 0 due to all the other charges. The negative
charges attract the charge at £ = 0 and try to pull it to the right; we call the
forces exerted by them positive, since they are in the direction of the positive =
axis. The forces due to the positive charges are in the negative x direction, and we
call them negative. For example, the force due to the positive charge at z = /2 is

—-(1-1)/ (\/5)2 = —1/2. The total force on the charge at = 0 is, then,

11 1
8.1 F=1- el T W
(83) 175767

!
3

B | =

Now we know that this series converges as it stands (Section 7). But we have also
seen that its sum (even the fact that it converges) can be changed by rearranging
the terms. Physically this means that the force on the charge at the origin depends
not only on the size and position of the charges, but also on the order in which we
place them in their positions! This may very well go strongly against your physical
intuition. You feel that a physical problem like this should have a definite answer.
Think of it this way. Suppose there are two crews of workers, one crew placing the
positive charges and one placing the negative. If one crew works faster than the
other, it is clear that the force at any stage may be far from the F of equation (8.1)
because there are many extra charges of one sign. The crews can never place all the
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charges because there are an infinite number of them. At any stage the forces which
would arise from the positive charges that are not yet in place, form a divergent
series; similarly, the forces due to the unplaced negative charges form a divergent
series of the opposite sign. We cannot then stop at some point and say that the
rest of the series is negligible as we could in the bouncing ball problem in Section
1. But if we specify the order in which the charges are to be placed, then the sum
S of the series is determined (S is probably different from F in (8.1) unless the
charges are placed alternately). Physically this means that the value of the force
as the crews proceed comes closer and closer to S, and we can use the sum of the
(properly arranged) infinite series as a good approximation to the force.

9. USEFUL FACTS ABOUT SERIES

We state the following facts for reference:

1. The convergence or divergence of a series is not affected by multiplying every
term of the series by the same nonzero constant. Neither is it affected by
changing a finite number of terms (for example, omitting the first few terms).

2. Two convergent series Y - ; an and Y .- b, may be added (or subtracted)
term by term. (Adding “term by term” means that the nth term of the sum
is an + bnp.) The resulting series is convergent, and its sum is obtained by
adding (subtracting) the sums of the two given series.

3. The terms of an absolutely convergent series may be rearranged in any order
without affecting either the convergence or the sum. This is not true of
conditionally convergent series as we have seen in Section 8.

PROBLEMS, SECTION9  -HewtLcovi<

Test the following series for convergence or divergence. Decide for yourself which test is
easiest to use, but don’t forget the preliminary test. Use the facts stated above when they

apply.

g z DI . 3 (
7 i (2(3;2 8. gg—: 9 22—7
10. 2 —1)"— 11. 27;7_’9 12. gnzl—n
18. i T)S/Z 14. 2 7(12"1_); 15. g (_113:"!
16. f: 2+17)n 17. igg; 18. i(;lﬂ
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Y mrmte mta-w
20 l+i_l_i+l+1_i_l+
2722 3 32 4°' 42 5 5?2

21. Y an ifans1 = s——an

= 2n+3
= 1 = 1
22. (a) Z3lnn (b) Zg;;
n=1 n=1

(c) For what values of k is Z kll? convergent?

n=1

10. POWER SERIES; INTERVAL OF CONVERGENCE

We have been discussing series whose terms were constants. Even more important
and useful are series whose terms are functions of z. There are many such series,
but in this chapter we shall consider series in which the nth term is a constant times
z™ or a constant times (z—a)™ where a is a constant. These are called power series,
because the terms are multiples of powers of z or of (z — a). In later chapters we
shall consider Fourier series whose terms involve sines and cosines, and other series
(Legendre, Bessel, etc.) in which the terms may be polynomials or other functions.
By definition, a power series is of the form

o0
ZanxnZao+a1m+a2z2+a3z3+-~ or
(10.1) I
Zan(w—a)":ao+a1(x—a) +as(z—a)? +as(x—a)+--,
n=0
where the coefficients a,, are constants. Here are some examples:
L . BT (=)
10.2 e s R £ ISR i T N
(10.2a) e P AR Tk
2 3 4 = n+1l,.n
(10.2b) m—%+%_%+...+()++...7
.’133 3/.5 LL‘7 (_1)n+1$2n—1
(10.2¢) I—_!+5__!+.”+w+”"
(z+2)  (z+2) (z+2)"
10.2d 1+ + SR N i e AR T
S Z A Jarl

Whether a power series converges or not depends on the value of z we are
considering. We often use the ratio test to find the values of z for which a series
converges. We illustrate this by testing each of the four series (10.2). Recall that
in the ratio test we divide term n + 1 by term n and take the absolute value of this
ratio to get pp, and then take the limit of p, as n — oo to get p.

Example1. For (10.2a), we have




